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n-type Ge is observable up to 225K. Our results indicate that the spin relaxation rate 

in the n-type Ge is closely related to the momentum scattering rate, which is 

consistent with the predicted Elliot-Yafet spin relaxation mechanism for Ge. The bias 
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Information processing based on the electron’s spin degree of freedom is 

envisioned to offer a new paradigm of electronics beyond the conventional 

charge-based device technologies [1, 2]. To add spin functionality into 

semiconductor-based field effect transistors (spin-FET) [3-5] is considered as one of 

the approaches to overcome the ultimate scaling limits of the mainstream silicon 

(Si)-based complementary metal-oxide-semiconductor (CMOS) technology [6]. 

Electrical injection and transport of spin-polarized electrons from ferromagnetic 

metals (FMs) into the semiconductors is a prerequisite for developing such an 

approach [1, 2]. Although significant progress has been achieved in GaAs [7, 8] and 

Si [9-12], little progress has been made in germanium (Ge), despite its ultimate 

importance in the semiconductor industry owing to the high charge carrier mobilities 

and the compatibility with the established CMOS technology. In addition, Ge is also 

expected to have enhanced spin lifetime and transport length due to the weak 

spin-orbital interaction resulting from the lattice inversion symmetry [13]. Liu et al. 

[14] reported the spin diffusion length in Ge nanowires (NW) based on local 

magnetoresistance (MR) between two Co/MgO/Ge NW contacts. However, 

unambiguous evidence of spin injection and transport based on non-local Hanle 

precession has not been reported. Furthermore, the spin lifetime, as well as the 

underlying physics governing the spin relaxation in Ge, remains to be explored. This 

information is ultimately important to a successful realization of Ge-based Spintronic 

devices. 

In this paper, we report the first demonstration of electrical spin injection to bulk 
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Ge by using an epitaxially grown Fe/MgO/n-Ge tunnel junction. The spin dependent 

properties of Ge are characterized by the non-local spin transport measurements. The 

non-local MR in Ge is observed up to 225K. Both the non-local MR and the spin 

lifetime are found to be weakly dependent on temperature at low temperature region 

(T<30K). However, the dependence becomes much stronger as the temperature 

increases. This is attributed to the dominance of spin relaxation by ionized impurity 

scattering at low temperatures and phonon scattering at higher temperatures. Our 

results show a close relation between the spin relaxation rate and the momentum 

relaxation rate, which is consistent with the predicted Elliot-Yafet spin relaxation 

mechanism for Ge [15, 16]. We also examine the bias dependence of the non-local 

MR and spin lifetime. The smaller non-local MR and shorter spin lifetime under 

forward biases are caused by the fast spin relaxation rate in the highly doped Ge 

surface layer. 

An unintentionally doped n-type Ge wafer is used as the starting substrate. A 

lightly doped n
-
 ( 16 31 10n cm  ) Ge layer (300 nm) is grown on this substrate as the 

spin transport channel. Above this layer is a transition layer (15 nm) to a degenerately 

doped n
+
 ( 19 32 10n cm  ) surface layer (15 nm). All these layers are grown by low 

temperature solid source molecular beam epitaxy [17]. Two devices (A and B) are 

fabricated on this wafer with the same processes. First, a device channel is defined by 

photolithography and etched by reactive ion etching. The width of the channel is 5 μm 

and 15 μm for device A and B, respectively. The height of the channel mesa is 60 nm 

for both devices. Four electrodes are then fabricated on the channel by the standard 
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e-beam lithography and liftoff process. The outer two electrodes are made of Au/Ti. 

The center two spin-dependent electrodes are made of MgO (1nm) and Fe (100 nm), 

which are deposited in a molecular beam epitaxy system, and capped by 5 nm Al2O3. 

The as-grown MgO is single crystalline and possessing 45 degree in-plane rotation of 

the unit cell with respect to that of the Ge [18]. A schematic of the atomic 

configuration is shown in Figure 1a. This high quality Fe/MgO/Ge junction not only 

alleviates the Fermi level pinning at the Ge surface to favor electronic transport [19], 

but also leads to an enhanced spin polarization of the injected electrons due to the 

symmetry induced spin filtering [20]. To characterize the spin injection and transport 

in Ge, we employ the non-local measurement technique [7, 21-24]. The 

center-to-center distance (L) between the spin injector (E2) and spin detector (E3) is 

420 nm and 1 μm for device A and device B, respectively. A schematic diagram of the 

device structure and measurement scheme is shown in Figure 1(b). The standard 

low-frequency lock-in technique is used for the measurement. 

Figure 1(c) shows a scanning electron microscope (SEM) image of the device A. 

The widths of the spin injector (E2) and spin detector (E3) are 400 nm and 250 nm, 

respectively. Temperature dependent I-V characteristics measured between the spin 

injector (E2) and E1 are shown in Figure 1(d). Since E1 is made of Au/Ti and the size 

is much larger than E2, we consider the I-V characteristics are dominated by the 

contact resistance of the spin injector (E2). The nonlinearity and weak temperature 

dependence of the I-V characteristics confirm the tunneling nature of this contact [25], 

which is necessary to overcome the conductivity mismatch problem for spin injection 
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from FMs to semiconductors [26-28]. 

To characterize spin injection and transport in Ge, we first perform the non-local 

spin valve measurement. In this measurement, a charge current is applied between the 

spin injector (E2) and E1 (as shown in Figure 1b), resulting in a spin accumulation in 

the Ge at E2 by means of spin injection (E2 under a reverse bias) or spin extraction 

(E2 under a forward bias) [29, 30]. In either case, once spin accumulation is created, 

the spin-polarized electrons start to diffuse isotropically in the Ge channel. The spin 

detector (E3) is placed outside the charge current path, and it detects a voltage 

potential which is proportional to the projection of the spin accumulation in the Ge 

onto its magnetization direction. Therefore, if the spin accumulation of the injected 

electrons is sizeable when they diffuse to E3, a bipolar non-local voltage VNL should 

be observed which changes sign when the magnetization directions of the spin 

injector (E2) and detector (E3) switch from parallel to anti-parallel. To modulate the 

magnetization directions of the spin injector (E2) and detector (E3), an external 

magnetic field (By) along the easy axis of the electrodes (y direction as indicated in 

Figure 1b) is swept and the VNL is recorded as a function of By. Figure 2(a) shows the 

non-local spin valve signal measured on device A at 4K, with a reverse DC bias 

current (IDC) of -20 μA and AC current (IAC) of 10 μA. The non-local resistance RNL is 

defined as the VNL divided by IAC. The difference of RNL between the parallel and 

antiparallel configuration is defined as the non-local MR (ΔRNL) and measured to be 

0.94 Ω in this case.  

Figure 2 (b) shows the non-local spin valve signals measured on device A at 
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different temperatures. The signal is observable up to 225K. Figure 2 (c) summarizes 

the ΔRNL as a function of the temperature for device A. The ΔRNL is weakly dependent 

on temperature at low temperature region, which increases slightly from 0.83  at 

1.5K to 1.04  at 10K, and then decreases to 0.72  at 30K. However, as the 

temperature further increases, the ΔRNL drops abruptly and is not observable for 

T>225 K. Similar temperature dependence of ΔRNL is also observed in device B with a 

longer transport channel (L = 1 m, as shown in Figure 2d). 

To further explore the spin transport properties in Ge, we perform the non-local 

Hanle measurement. In this measurement, a small transverse (in z direction as shown 

in Figure 1b) magnetic field (Bz) is applied to induce the precession of the injected 

spin by the Hanle effect [23, 31]. The precession and dephasing of the spins during 

their transport in Ge is manifested as the magnetic field (Bz) dependence of the VNL (or 

RNL, equivalently). Figure 3(a) shows the Hanle precession curves of device B at 4K 

under a reverse bias of -130 μA, which provide the unambiguous evidence of spin 

injection and transport in Ge. The red and black symbols are for signals taken when 

the injector/detector magnetizations are in parallel and anti-parallel configurations, 

respectively. A spin lifetime ( s ) of 1.08 ns is extracted by fitting the Hanle curves 

based on the 1-D spin drift diffusion model [7, 21, 24],
 
under which 
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In the above equation, + (-) sign is for the parallel (antiparallel) magnetization 

configuration, D is the diffusion constant, /L B zg B   is the Larmor frequency 

(where g=1.6 is the Landé g-factor for Ge [32], µB is the Bohr magneton and ћ is the 
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reduced Planck constant). The temperature dependent spin lifetimes for device A and 

device B (obtained under reverse biases) are shown in Figure 3(b) in solid circles and 

open squares, respectively. Similar to the temperature dependence of ΔRNL, the 

dependence of the spin lifetime on temperature is rather weak at low temperatures, 

while it becomes much stronger as the temperature increases. This can be explained as 

in the following. For Ge, which possesses the lattice inversion symmetry, the spin 

relaxation is predicted to be dominated by the Elliot-Yafet mechanism [15, 16], under 

which the spin relaxation rate (1/ s ) is proportional to the momentum relaxation rate. 

The two major sources of momentum relaxation are the ionized impurity scattering 

and the phonon scattering. And the temperature dependence of the ionized impurity 

scattering rate is found to be much weaker than that of the phonon scattering in n-type 

Ge [33]. It is expected that at low temperature region, ionized impurity is the 

dominant scattering source, therefore a weak temperature dependence of the spin 

relaxation rate (or spin lifetime, equivalently) is observed. As the temperature 

increases, phonon scattering becomes dominant, resulting in a much higher 

temperature dependence of the spin lifetime. Our results are consistent with the 

predicted Elliot-Yafet spin relaxation mechanism for Ge. 

Finally we study the bias dependence of the ΔRNL and the spin lifetime. Figure 

4(a) shows the DC bias dependent ΔRNL of device A at different temperatures. Since 

we use the lock-in technique, the measured VNL is characteristic of the slope of VNL 

versus IDC curve from the DC measurement. The inset of Figure 4(a) shows the 

restored DC relation between the VNL and IDC at 10K by numerically integrating our 
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VNL over IDC. The bias dependence of VNL at reverse bias is consistent with the 

reported results on the Fe/GaAs system [7]. However, our data do not display the 

nonmonotonic behavior at forward biases, which was attributed to the localized 

electrons in the surface bands due to the doping profile in the Fe/GaAs system [34]. It 

is noted that the ΔRNL is much smaller at forward biases as compared to those at 

reverse biases. Figure 4(b) and (c) shows the Hanle precession curves at 10K with a 

DC reverse bias of -20 μA and a forward bias of +20 μA, respectively. It is also found 

that the spin lifetime extracted from forward bias (332 ps) is shorter than that from the 

reverse bias (773 ps). The bias dependence of the ΔRNL and spin lifetime can be 

explained by the doping dependent spin relaxation as in the following. When a reverse 

bias is applied, the depletion region in the Ge extends and spin polarized electrons are 

injected into the lightly doped Ge channel (inset of Figure 4b). However, when a 

forward bias is applied, the depletion region is reduced and the spin accumulates 

mainly at the highly doped surface layer (inset of Figure 4c), where a faster spin 

relaxation rate is expected due to the larger momentum scattering by ionized 

impurities.  

In conclusion, we have successfully achieved electrical spin injection, transport 

and detection in bulk n-type Ge by using an Fe/MgO/n-Ge tunnel junction. 

Investigating the temperature and bias dependence of the non-local spin valve signals 

and the spin lifetimes, we show that the spin relaxation in Ge is consistent with the 

predicted Elliot-Yafet mechanism. Our results present a major step towards achieving 

Ge-based Spintronics devices for a new paradigm of non-volatile electronics beyond 
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CMOS technology.        
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Figure Captions 

 

Figure 1 (color online). (a) Schematic atomic configuration of the Fe/MgO/Ge 

junction, showing 45 degree rotation of the MgO unit cell with respect to that of the 

Ge. (b) A schematic diagram of the device structure and the non-local measurement 

scheme. The center-to-center distances between the spin injector and detector are 420 

nm and 1 μm for device A and B, respectively. (c) A SEM image of device A. The 

widths of the injector (E2) and detector (E3) are 400 nm and 250 nm, respectively. (d) 

Temperature dependent I-V curves measured between spin injector (E2) and E1. 

 

Figure 2 (color online).  (a) Non-local spin valve signal measured on device A at 4K 

with a DC injection current of -20 μA and AC injection current of -10 μA. The blue 

arrows indicate the magnetization directions of the injector and detector. (b) 

Temperature dependent non-local spin valve signals on device A. The curves are 

offset for clarity. (c) and (d), Temperature dependent non-local magnetoresistance 

(ΔRNL) of device A and B, respectively. 

 

Figure 3 (color online).  (a) Non-local Hanle precession curves measured on device 

B at 4K with a DC injection current of -130 μA. The red and black symbols are for 

signals measured when the injector and detector are in parallel and antiparallel 

configurations, respectively. The solid lines are fitting based on the 1-D spin drift 

diffusion model, from which the spin lifetime is extracted to be 1.08 ns. (b) 

Temperature dependent spin lifetimes measured on device A (solid circles) and B 

(open squares), respectively. 
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Figure 4 (color online).  (a) The DC bias dependent ΔRNL of device A at different 

temperatures. The inset shows the restored DC relation between the VNL and IDC at 

10K by numerically integrating our VNL over IDC. (b) and (c), Hanle precession curves 

measured on device A at 10K under a reverse bias of -20 μA and a forward bias of 

+20 μA, respectively. The spin lifetimes extracted from the fittings (solid lines) based 

on the 1-D spin drift diffusion model are 773 ps and 332 ps for reverse and forward 

biases, respectively. The insets show the locations of the spin accumulation.  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 


